
not confidential | public

Version for Scalable Tools Workshop 2025

D
W

A
R

F6 and Support for G
P

U
s and Vectorized C

ode

1

DWARF6 and Support for GPUs and

Vectorized Code

What is Going on
with Debugging
Info?

Ben Woodard

not confidential | public

Version for Scalable Tools Workshop 2025

You’ve been warned

2 Source:
https://llvm.org/docs/AMDGPUDwarfExtensionsForHeterogeneousDebugging.html#introduction
https://github.com/ccoutant/dwarf-locations/tree/main
https://snapshots.sourceware.org/dwarfstd/dwarf-spec/2025-05-17_20-15_1747512902/dwarf6-20250517-2014.pdf

I’m presenting this but this is certainly not exclusively my work. This is the

work of the DWARF for GPU’s group. Participants include:

▸ Started AMD and they did the original design

▸ TotalView (John DelSignore) instrumental in the design

▸ Led by Cary Coutant the DWARF Committee chair

▸ Intel has made important contributions

▸ Nvidia is now participating as well.

▸ Red Hat

Disclaimer

https://llvm.org/docs/AMDGPUDwarfExtensionsForHeterogeneousDebugging.html#introduction
https://github.com/ccoutant/dwarf-locations/tree/main
https://snapshots.sourceware.org/dwarfstd/dwarf-spec/2025-05-17_20-15_1747512902/dwarf6-20250517-2014.pdf

not confidential | public

Version for Scalable Tools Workshop 2025

Level 9 politics

3

After several years of hiatus post DWARF5. The DWARF committee is

meeting regularly being led by Cary Coutant (ELF standard maintainer).

▸ Administration change last year has been very positive.

▸ People are working constructively

▸ Issues are being worked through the process

▸ Draft standard is being published in the open.

▸ Some mailing lists are open.

▸ DWARF6 is probably about 1 year out (guess)

▸ GPU support is the marquee feature.

Overall status of DWARF

Source:
https://lists.dwarfstd.org/mailman/listinfo/dwarf-discuss
https://dwarfstd.org/issues.html
https://snapshots.sourceware.org/dwarfstd/dwarf-spec/

https://lists.dwarfstd.org/mailman/listinfo/dwarf-discuss
https://dwarfstd.org/issues.html
https://snapshots.sourceware.org/dwarfstd/dwarf-spec/

not confidential | public

Version for Scalable Tools Workshop 2025

4

Basic needed cleanups

▸ Vector/Matrix Tensor types

▸ Vendor extensions

▸ Expression Context

▸ Lane operator

Simple changes

not confidential | public

Version for Scalable Tools Workshop 2025

Why wasn’t this done before?

5
Source:
https://sourceware.org/elfutils/DwarfExtensions
https://dwarfstd.org/issues/230413.1.html

Original design as a GNU vendor attribute back in 2001. Just never made

it into the original standard. Supports intrinsic vector types.

▸ Standardized and extended existing behavior

▸ Now supports multidimensional types. E.g. matrix registers

▸ Different than C arrays in that they don’t decay into pointers

▸ Can be passed by value

Vector/Matrix Tensor
Status: approved in the current draft standard

not confidential | public

Version for Scalable Tools Workshop 2025

Because nobody ever mixes toolchains or writes their own tools

6 Source:
https://dwarfstd.org/issues/231110.2.html
https://dwarfstd.org/issues/231110.4.html - rejected
https://dwarfstd.org/issues/231110.3.html

Three parts. Concept: tools no longer vertically integrated within a

vendor supplied toolchain. Most tools and toolchains are open source.

▸ Numerous catalogs of vendor extensions gathered into a registry

▸ No longer thought of as “private agreement between producer and

consumer within a vendor toolchain”. Consumers must support

multiple producers.

▸ DWARF6 flag day - shot down

Status: partially accepted

Vendor extensions are now Producer extensions

https://dwarfstd.org/issues/231110.2.html
https://dwarfstd.org/issues/231110.4.html
https://dwarfstd.org/issues/231110.3.html

not confidential | public

Version for Scalable Tools Workshop 2025

Should have been obvious

7
Source:
Ihttps://github.com/ccoutant/dwarf-locations/blob/main/001a-context.md
https://dwarfstd.org/issues/241011.1.html

Excerpt from AMD’s DWARF for GPUs proposal. Editorial in nature.

▸ Expected result of evaluation

▸ Initial stack (not always empty a kind of ABI)

▸ Compilation unit

▸ Target architecture

▸ Current thread

▸ Call frame

▸ PC

▸ Current lane

▸ Current object

Status: accepted

Expression Context

http://github.com/ccoutant/dwarf-locations/blob/main/001a-context.md
https://dwarfstd.org/issues/241011.1.html

not confidential | public

Version for Scalable Tools Workshop 2025

Why didn’t I think of that?

8
Source:
https://dwarfstd.org/issues/211206.1.html

Part of Intel’s approach to support DWARF for vector registers.

▸ Much of their original approach to support vector superseded

▸ DW_OP_push_lane incorporated into expression context section.

Status: accepted

Push lane

not confidential | public

Version for Scalable Tools Workshop 2025

9

Supporting GPUs

not confidential | public

Version for Scalable Tools Workshop 2025

You all know this already

10

CPUs

● Single address space

● Relatively few registers

● Few vector registers

● Threads are independent

GPUs

● Multiple address spaces with different

pointer sizes

● Many registers (hundreds)

● Many vector registers (huge)

● Threads are often fused (wave/warp)

● Weird things - doubles spanning

registers

CPUs vs GPUs

not confidential | public

Version for Scalable Tools Workshop 2025

Like pulling teeth - without novacain

11
Source:
https://github.com/ccoutant/dwarf-locations/blob/main/005-locations-on-stack.md
Alternate: https://dwarfstd.org/issues/250408.1.html

Conceptually simple but ended up being the biggest and most

controversial change. Several alternative proposals. The DWARF

committee now understands it.

▸ Huge reorganization of Chapter 2. Split making a new Chapter 3

▸ Pushing a location onto the stack allows it to be further modified.

▸ DW_OP_call is much more versatile

▸ Composites are now built on the stack rather on the side

Status: final review

Locations on the DWARF stack – I

https://github.com/ccoutant/dwarf-locations/blob/main/005-locations-on-stack.md
https://dwarfstd.org/issues/250408.1.html

not confidential | public

Version for Scalable Tools Workshop 2025

A clear abstraction

12

Think of locations as a tuple

▸ Either (storage, offset, bit_offset) or (storage, (offset, bit_offset))

▸ Locations reference storage i.e. registers, memory, undefined,
implicit, and composite.

･ “Storage” is an abstraction for all types.

▸ Locations have an offset into that storage bytes, bits.

･ DW_OP_offset, DW_OP_bit_offset

･ Not the same as DW_OP_plus which is for values not locations

･ Registers can offsets too - more useful for vector registers

Status: final review

Locations on the DWARF stack - II

not confidential | public

Version for Scalable Tools Workshop 2025

Wow so useful

13

Source:
Ihttps://github.com/ccoutant/dwarf-locations/blob/main/016-overlay-composite-location-descriptions.md

A better way to make composites.

▸ No one liked DW_OP_piece - rarely used

▸ DW_OP_bit_piece had endian problems

▸ Originally designed for vector registers but uses have expanded

Status: nearly ready for submission

Overlays

DW_OP_addr 0x100 #base
DW_OP_reg1 # overlay
DW_OP_breg0 # loop index
DW_OP_lit8 # width of type
DW_OP_mul # offset
DW_OP_lit8 # width
DW_OP_overlay

not confidential | public

Version for Scalable Tools Workshop 2025

Even nvidia agrees

14

Source:
Ihttps://github.com/ccoutant/dwarf-locations/blob/main/013-generalize-address-spaces.md

GPUs have multiple address spaces e.g. LDS, GDS

▸ Not DW_OP_xderef (what nvidia tried)

▸ DW_OP_form_aspace_address - adds an address space number to a
memory location.

▸ Many times values were used as an address through implicit
conversion.

▸ Pointers in alternate address spaces are not necessarily the same
width as in the system address space. Need a way to change a type
for pointers.

Status: on deck from GPU group (almost done)

Address Spaces

not confidential | public

Version for Scalable Tools Workshop 2025

For when the compiler gets creative

15

Name subject to change.

▸ Size of a pointer may change based on address space

▸ E.g. 80b extended float vs. 64b double

▸ Compiler proves that a smaller type can be used.

Status: not yet written

Refined types

not confidential | public

Version for Scalable Tools Workshop 2025

So much left to do

16 Source:
https://github.com/ccoutant/dwarf-locations/blob/main/003-clarifications-cfi.txt https://github.com/ccoutant/dwarf-locations/blob/main/017-call-frame-entry-registers.txt
https://github.com/ccoutant/dwarf-locations/blob/main/015-vector-composite-location-descriptions.txt
https://github.com/ccoutant/dwarf-locations/blob/main/022-memory-spaces.txt

Still many changes to come

▸ CFI/CFA needs a bit of work for address spaces

▸ Need more operations to selective spill registers based upon exec
mask DW_OP_extend DW_OP_select_bit_piece

･ Kind of like overlay but with bitmasks

･ Needed for divergent flow control

･ Needed for logical PCs in SIMT sections with fused threads

▸ Memory spaces - type modifier for source language e.g. “private”

▸ Semantics of operations when a loclist yields multiple locations

▸ Lots of clarifications and details

Status: not complete

Other things on deck

https://github.com/ccoutant/dwarf-locations/blob/main/003-clarifications-cfi.txt
https://github.com/ccoutant/dwarf-locations/blob/main/017-call-frame-entry-registers.txt
https://github.com/ccoutant/dwarf-locations/blob/main/015-vector-composite-location-descriptions.txt
https://github.com/ccoutant/dwarf-locations/blob/main/022-memory-spaces.txt

not confidential | public

Version for Scalable Tools Workshop 2025

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

17

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

Thank you

not confidential | public

Version for Scalable Tools Workshop 2025

For when the compiler gets creative

18

Let’s see what we can do with these

▸ Make split-dwarf work for packages like RPM and packagers like
spack

▸ Extend CFI table to refer to variables and expressions

▸ Formalize rules of arithmetic for values vs. locations

▸ Retire antiquated DWARF logo and replace it with

Status: not yet written

Crazy Ideas

